Медицинский портал. студентам, врачам, медицинские книги

скачать медицинские учебники, лекции

Главная » Файлы » Терапия, факультетская, мануальная, физиотерапия

Гальванизация. физиотерапия
20.06.2009, 19:15


Гальванизация.

Электрический ток представляет собой направленное (упоря­доченное) движение заряженных частиц. По способности веществ проводить электрический ток их разделяют на проводники и диэлектрики. Деление это условно, поскольку большинство веществ являются полупроводниками: одни не настолько хорошо проводят электрический ток, чтобы их отнести к проводникам, другие - не настолько плохо, чтобы назвать их диэлектриками.

Проводники электрического тока делят на две группы: металлы, проводимость которых обусловлена движением свободных элек­тронов, и электролиты, где носителями заряда являются ионы.

Живые ткани представляют собой электролиты-проводники и диэлектрики. Наибольшей электропроводностью обладают плазма крови, спинномозговая жидкость. Несколько меньшей - цельная кровь, мышцы, паренхиматозные органы. Большое сопротивление электрическому току создают кости, жировая ткань, фасции, сухожилия и другие соединительнотканные образования. К диэлектрикам приближаются сухая кожа, волосы, ногти.

Гальванизация - лечебное воздействие постоянным непрерыв­ным электрическим (гальваническим) током низкого напряжения (60 - 80 в) и малой силы (до 50 мА).

Аппараты:  

- АГН (аппарат гальванизации настенный):

- АГП (аппарат гальванизации переносной);

- АГС (аппарат гальванизации стоматологический);

- ГР (гальванизатор ротовой полости);

- "Поток".

Основные биофизические процессы: гальванический ток проникает в ткани через устья сальных и потовых желез, волося­ные фолликулы, межклеточные щели и пространства. При дли­тельном воздействии проникновение его в ткани происходит через всю кожу. При некоторых лечебных методиках электрический ток подводят к тканям через слизистые оболочки, поверхность ран.

Вглубь тканей электрический ток направляется в основном по кровеносным и лимфатическим сосудам, "петляя" по тканям.

При включении электрической цепи сразу же начинается направленное перемещение ионов в соответствии с их поляр­ностью (рис.2), накопление их у электродов - процесс поляризации.


Рис.2 Схема движения ионов при гальванизации:

1 – электроды; 2 – прокладки.

Отрицательно заряженные ионы (анионы) концентрируются у положительного электрода (анода), положительно заряженные (катионы) - у отрицательного электрода (катода). При соприкосновении с электродами катионы получают недостающие электро­ны, а анионы отдают лишние электроны. В результате этого на электродах происходит процесс выделения веществ - электролиз. При этом на электродах выделяется настолько значимое количество щелочи и кислоты, что для устранения их прижи­гающего действия применяют матерчатые прокладки толщиной не менее 1 см.

На пути ионов при движении к электродам внутри тканей встречаются клеточные мембраны, обладающие значительным сопротивлением электрическому току. Ионы скапливаются около мембран, образуя поляризационные зоны и поля внутри тканей. Поляризационный потенциал, измеренный электронным вольт­метром, достигает максимальной величины (200 - 500 мВ) через 25 – 30 минут от начала воздействия. При выключении электрического тока он понижается по гиперболе, теряясь в физиологи­ческих колебаниях тканевого потенциала через 3 - 5 часов.

Выравнивание концентрации ионов в тканях после выключения электрического тока происходит за счет процессов диффузии - перемещения ионов из места их большей концентрации к месту меньшей концентрации. В этом выравнивании имеют значение и процессы осмоса - проникновение растворителя (в данном случае воды) через мембраны из места меньшей концентрации ионов в место их большей концентрации. Следовательно, процессы диффузии и осмоса, имеющие место в живых тканях и в физио­логических условиях, под действием постоянного электрического тока интенсифицируются. Проницаемость окружающих мембран, определяющая интенсивность этих процессов, увеличивается.

Основные физиологические реакции и лечебное действие. 


Представление о физиологических реакциях, возникающих под влиянием постоянного электрического тока, основаны на ионной теории возбуждения, в разработку которой большой вклад внес академик П.П. Лазарев. Согласно этой теории для процессов воз­буждения имеет значение количественное соотношение между одновалентными ионами - калием и натрием, и двухвалентными - кальцием и магнием. Подвижность ионов в значительной мере зависит от величины их гидратной оболочки - присоединенных к ионам дипольных молекул воды. Двухвалентные ионы, имеющие более мощную гидратную оболочку по сравнению с одновалентными, передвигаются медленнее. Поскольку все перечисленные ионы заряжены положительно, они передвигаются от анода к катоду. Через некоторое время под катодом будет наблюдаться относительное преобладание концентрации более подвижных ионов калия и натрия, ''обогнавших" менее подвижные ионы кальция и магния. Под анодом, наоборот, будет преобладать кон­центрация менее подвижных ионов кальция и магния.

Концентрация указанных ионов и их соотношение имеют большое значение для процессов возбуждения. Изменение возбу­димости тканей под действием электрического тока называют электротоном. В момент замыкания электрической цепи под катодом увеличивается возбудимость ткани, увеличивается прони­цаемость мембран и уменьшается их электрическое сопро­тивление. Это изменение возбудимости под катодом называют катэлектротоном. Под анодом возбудимость ткани снижается, клеточные мембраны уплотняются, и увеличивается их электри­ческое сопротивление. Эти изменения называются анэлектротоном. Через некоторое время в процессе продолжающегося воздействия постоянным электрическим током возбудимость под обоими полюсами возвращается к исходным величинам. При лечебном применении постоянного электрического тока учитывают особенности изменений возбудимости под катодом и под катодом. Если целью воздействия является снижение возбудимости ткани, на этот участок воздействуют анодом. Для повышения возбудимости ткани воздействуют катодом.

Постоянный электрический ток подводят к тканям с помощью электродов, накладываемых на кожу. Значительная величина сопротивления кожи приводит к тому, что почти все напряжение, подводимое к электродам, приходится на кожу. На этом участке кожи появляется ощущение ползания мурашек, легкое жжение, что связано с раздражением чувствительных нервных окончаний. Под электродами появляется гиперемия кожи, отек с набуханием всех ее слоев. Эти изменения ни в коей мере не связаны с тепловым воздействием. В методе гальванизации используется электрический ток столь малой силы, что практически значимого количества тепла в межэлектродном пространстве не выделяется. Механизм образования гиперемии нервно-рефлекторный. Раздра­жение чувствительных нервных окончаний вызывает рефлек­торные реакции, имеющие местный сегментарный характер. Следствием их является расширение сосудов. Степень выраженности ответной реакции зависит от насыщенности дан­ного участка кожи рецепторами. С соответствующих кожных зон можно воздействовать на внутренние органы через вегетативные нервные волокна и спинальные центры, вызывая в них рефлекторным путем такие же изменения, как и в коже: увеличение проницаемости мембран, интенсификацию диффузии и осмоса. Интенсивность обменных процессов в зоне воздействия увеличивается.

Постоянным электрическим током можно воздействовать и на центральную нервную систему. В головном и спинном мозге имеется функциональная полярность нисходящего направления: вышележащие центры заряжены положительно, нижележащие – отрицательно. Это состояние, называемое физиологическим анэлектротоном, обеспечивает нормальное функционирование центральной нервной системы. Его можно усилить с помощью постоянного электрического тока, соответственно располагая электроды. Например, положительный электрод в области лба, отрицательный - в межлопаточном пространстве. Такое воздей­ствие способствует улучшению координирующей и регулирующей функций головного мозга, что может быть полезно при кортико - висцеральных заболеваниях.

В результате воздействия постоянным электрическим током наблюдается стимуляция системы фагоцитирующих макрофагов (клетки РЭС), что повышает эффективность защитных реакций.

Основные показания к применению.

1. Воспалительные процессы (без нагноения) в стадии разрешения.

2. Заболевания и травмы периферической нервной системы.

3. Дегенеративно-дистрофические заболевания опорно-двигатель­ного аппарата.

4. Дискинезии внутренних органов.

5.Кортико-висцеральные заболевания; функциональные расстройства центральной нервной системы.

Основные противопоказания к применению.

1. Острые стадии воспалительного процесса, гнойное воспаление.

2. Нарушения целостности кожных покровов (царапины, ссадины).

3. Острая и подострая экзема, другие дерматиты в области нало­жения электродов.

4. Наличие признаков раздражения кожи после предыдущей про­цедуры.

5. Острейший болевой синдром, вызванный повреждением перифе­рических нервных стволов.

Дозировка:  

1) по плотности электрического тока (0,01 - 0,1 мА на 1 кв. см, площади прокладки);

2) по ощущениям больного (легкое покалывание, жже­ние);

3) по длительности процедуры (от 15 до 30 минут)

4) по кратности проведения процедур (ежедневно или через день);

5) по количеству процедур на курс лечения (10-15, мак­симально 30).







Похожие статьи Добавь в закладки

Категория: Терапия, факультетская, мануальная, физиотерапия | Добавил: MedVUZ | Теги: гальванизация
Просмотров: 8992 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

РязГМУ поступить контакты сайт история медицинская академия информация скачать акушерство ОЗЗ Доктор Хаус Scrubs сериалы хирургия телефон лекции стоматология офтальмология Хью Лори клиника экзамен юмор интерны актёры Доктор Тырса терапия PDF практические навыки Учебники учебник диагностика классификация лечение неврология ЕГЭ травматология